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» N-body simulations are our only tool to understand deeply
non-linear structure formation

> In the very early universe, evolution of perturbations can be
calculated exactly

> After CMB in the matter domination, linear evolution is very
easy: each mode grows independently:

p(x) = p(1+6(x)) (1)
i(x,2) = G(2)4(x) (2)
ok(k,z) = G(2)dk(k) (3)
P(z,k) = G(2)*(dk0k) (4)



You form initial conditions by picking a sufficiently high
redhift and:

> Loop over k-modes
» For each k- mode pick a Gaussian random complex number
with variance P(k) (and random phase)

This gives you a realization of the field at given redshift
Move particles appropriately and give them appropriate linear
velocities

Start a full integration of the system:

» Large scale remain linear and grow according to G(z)
» Small scales evolve into fully non-linear structure






We can transform any Gaussian initial conditions of an N-body
simulation into an equally likely initial conditions by transforming
like

(51(k)—> A(51:(51A(k), (5)

If
AA* = 1, (6)
Ak) = A*(—k). (7)

the rotated initial conditions are an equally likely realization of the
same universe.
Two special cases:

» A= 41, a constant

» A= ek a3 translation



A trivial case A = —1. We have
d— —6 (8)

(both in real and Fourier space)
You get a pair of initial conditions, but

» Overdensities in correspond to underdensities in the other
(and vice versa)

» Halos in one will correspond to voids in the other (and vice
versa)

» Large scales are expected to evolve the same (up to a minus
sign).
» Small scales will “decorrelate”



» w Pontzen (UCL)
» 200 Mpc, 5123 particles, WMAP5 cosmology

» Run standard and inverse
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There are many perturbation theory approaches. In SPT

(k) = a'6i(k), (9)
i=1

where ad, term is a convolution of n initial fields 6; with a relevant
perturbation theory kernel and where translational invariance
reduces the dimensionality of the integral to n — 1:

dn(k) = /// Fo(k, k', k" .. )3k d3k"d3K" . .. a3k (n=Dtmesg, (1) 6 (k")

(10)
It is immediately clear that for the inverse simulations, the orders
in the evolved field are the same in magnitude, but that odd ones
flip the sign:

8i; = (—1Y4; (11)



The standard auto-power spectrum is given by
P(k) = (5(k)d"(k)) = P11(k) + (P13(k) + Paa(k)) +... (12)

where Pi1 is the linear power spectrum and at second order we get
two contributions Py = (d2(k)d3(k)) and P13 = 2 (61(k)d3(k)).
The cross-power spectrum between the standard and inverse field
is the same, but the some terms acquire negative sign:

Px (k) = (6(k)0"(k)) = —Pr1(k)+(=P13(k) + P2a(k)) +... (13)



1.0

k[h/Mpc]



k[h/Mpc]






We fitted Py(k)/Pi(k) with the following function fomr:

Pulk) _ (& )

kNL

Pa(k) )
We see that this simple formula is an excellent fit down to 6th
snapshot corresponding to redshift of z ~ 2. In fact, the fitted « is
equal to 2 to 4 significant figures at z =9, is around 2.2 at
redshift of z =2 and raises to ~ 3 at z = 0.
Cleary a deeper reason for Gaussian suppression. Argument why
expansion parameter should be small (k/knt,) rather than 9.




» Currently running simulations where just k < k, modes are
flipped: can test the spreading of information in modes

» Excellent tool for void studies — identify halos in inverse, look
where those particle IDs end up in standard

» Very good tool for testing various perturbation schemes, e.g.
Effective Field Theory



